A Totally Unimodular Description of the Consistent Value Polytope for Binary Constraint Programming
نویسندگان
چکیده
We present a theoretical study on the idea of using mathematical programming relaxations for filtering binary constraint satisfaction problems. We introduce the consistent value polytope and give a linear programming description that is provably tighter than a recently studied formulation. We then provide an experimental study that shows that, despite the theoretical progress, in practice filtering based on mathematical programming relaxations continues to perform worse than standard arc-consistency algorithms for binary constraint satisfaction problems.
منابع مشابه
A Totally Unimodular Description of the Consistent Value Polytope
We present a theoretical study on the idea of using mathematical programming relaxations for filtering binary constraint satisfaction problems. We introduce the consistent value polytope and give a linear programming description that is provably tighter than a recently studied formulation. We then provide an experimental study that shows that, despite the theoretical progress, in practice filte...
متن کاملWaveform Design using Second Order Cone Programming in Radar Systems
Transmit waveform design is one of the most important problems in active sensing and communication systems. This problem, due to the complexity and non-convexity, has been always the main topic of many papers for the decades. However, still an optimal solution which guarantees a global minimum for this multi-variable optimization problem is not found. In this paper, we propose an attracting met...
متن کاملMonotone Covering Problems with an Additional Covering Constraint
We provide preliminary results regarding the existence of a polynomial time approximation scheme (PTAS) for minimizing a linear function over a 0/1 covering polytope which is integral, with one additional covering constraint. Our algorithm is based on extending the methods of Goemans and Ravi for the constrained minimum spanning tree problem and, in particular, implies the existence of a PTAS f...
متن کاملCompact Linearization for Binary Quadratic Problems subject to Assignment Constraints
We prove new necessary and sufficient conditions to carry out a compact linearization approach for a general class of binary quadratic problems subject to assignment constraints as it has been proposed by Liberti in 2007. The new conditions resolve inconsistencies that can occur when the original method is used. We also present a mixed-integer linear program to compute a minimally-sized lineari...
متن کاملIsolating a Vertex via Lattices: Polytopes with Totally Unimodular Faces
We deterministically construct quasi-polynomial weights in quasi-polynomial time, such that in a given polytope with totally unimodular constraints, one vertex is isolated, i.e., there is a unique minimum weight vertex. More precisely, the property that we need is that every face of the polytope lies in an affine space defined by a totally unimodular matrix. This derandomizes the famous Isolati...
متن کامل